Circular RNA: Vaccines, therapeutics and biomarkers could be revolutionised (2024)

  • Features

CircRNA is still in very early days of development, but it is expected to trialled in vaccines, therapeutics and biomarkers trials in the next few years.

Abigail Beaney May 15, 2024

Circular RNA: Vaccines, therapeutics and biomarkers could be revolutionised (1)
Circular RNA: Vaccines, therapeutics and biomarkers could be revolutionised (2)

In October 2023, Katalin Karikó, PhD and Drew Weissman, PhD won the Nobel Prize in Physiology or Medicine for their work with messenger ribonucleic acid (mRNA), which laid the foundation for COVID-19 mRNA vaccines.

mRNA therapies and vaccines have revolutionised the drug development space in the last few years thanks to breakthroughs in advanced research. Now, only a few years after the first mRNA vaccine was authorised, the mRNA approach may soon be trumped by circular RNA (circRNA).

CircRNA is a type of single-stranded RNA that, unlike linear RNA, forms a covalently closed continuous loop. In circular RNA, the 3’ and 5’ ends that are normally present in an RNA molecule are joined together.

mRNA vaccines will be key in preventing and treating diseases in the future, but expensive manufacturing, requirements for cold-chain storage, and difficulties in transporting make their use complicated. In such circumstances, circRNA could step in and take its place.

Alex Wesselhoeft, PhD, director of RNA Therapeutics at the Gene and Cell Therapy Institute, Mass General Brigham, says it is still early days with circRNA, but based on preclinical research, these candidates could be even better than mRNA therapies.

See Also:

  • Boehringer outlines up to $33.6m for cancer asset from OSE Therapeutics
  • Cervical cancer elimination in the UK is within sight with HPV vaccine

“It took mRNA 30 years to become what it is. In terms of just what the technology can do however, [circRNA] could be mRNA 2.0,” Wesselhoeft explains.

Access the most comprehensive Company Profiles on the market, powered by GlobalData. Save hours of research. Gain competitive edge.

Circular RNA: Vaccines, therapeutics and biomarkers could be revolutionised (7)

Company Profile – free sample

Your download email will arrive shortly

We are confident about the unique quality of our Company Profiles. However, we want you to make the most beneficial decision for your business, so we offer a free sample that you can download by submitting the below form

By GlobalData

Characteristics of circRNA could make it superior

The closed loop structure of circRNA could make more stable, longer lasting vaccine candidates compared to linear-based mRNA. Additionally, these advantages could also mean that less of the genetic material is required with circRNA, meaning that more vaccines could be effective as single doses and patients could suffer fewer adverse events since lower quantities of the active ingredient would be needed.

Nikolaus Rajewsky, PhD, who runs the circRNA lab at the Max Delbrück Centre for Molecular Medicine in Berlin, says a number of big companies are building a pipeline of circRNA candidates. At the same time, he says, “We also understand very little still about circRNAs despite having had many papers published. The problem here is the bigger insights are always difficult.”

Erik Wiklund, CEO, Circio Holding, a biotech investigating circRNA as therapeutics, says it will take some time but he is also hopeful circRNA could be the next big breakthrough in the RNA field. Circio is exploring the possibilities of a universal flu vaccination; however, as most of the big pharma companies investigating circRNA are focusing on its potential in vaccines, Wiklund said that the team at Circio decided to focus most of its efforts on the therapeutics field.

“We believe that we can make a massive improvement on adeno-associated virus (AAV)-based gene therapy,” Wiklund explains. “Almost all gene therapies approved today are based on the AAV virus but the big caveat is that you need to give really high doses when you express the gene of interest using mRNA.” Moreover, safety problems like liver toxicities, and in some instances serious adverse events and death, are also a challenge. “Using our circRNA surface technology, we anticipate that we can increase the protein output by maybe up to 100-fold,” Wiklund says.

With circRNA, the candidate will contain one hundredth the amount of AAV of current therapies, therefore it is likely to have a better safety profile as well as becoming easier and cheaper to manufacture. AAVs are unable to carry a great deal of genetic material. Due to circRNA being longer-lasting due to its closed loop structure, less is required to be as effective, resulting in a reduced dose of AAV to carry the same dose capability.

Wiklund adds the company is focusing on its lead therapeutic candidate treating patients with alpha-1 antitrypsin deficiency.

Although therapies using circRNA will benefit heavily from the reduced dosing needs, it is not likely that these could be developed as a one-and-done type therapy such as Vertex Pharmaceuticals’ Casgevy (exagamglogene autotemcel), and multiple infusions through a patient’s life may be needed, he adds. Casgevy is a medicine used to treat the blood disorders beta thalassaemia and sickle cell disease in patients 12 years and older. It is the first clustered regularly interspaced short palindromic repeats (CRISPR) therapy to receive approval in the US, UK, and Europe.

Potential as a biomarker for neurodegenerative disease

Amid the great deal of preclinical research being conducted in circRNA, one significant discovery over the past decade has been regarding its high presence in neurons.

Research from Rajewsky’s lab suggests circRNA could be a potential biomarker for neurodegenerative diseases. Moreover, circRNAs are also found in the blood and could also be effective as a biomarker there, Rajewsky adds.

If circRNA can be utilised as a biomarker at earlier stage of disease, potentially before symptoms develop in some diseases such as Alzheimer’s or Parkinson’s, it may become easier for drug developers to develop therapies that can better delay disease development, which would have a huge impact on healthcare.

“The discovery that circRNA plays an important role in age-associated diseases, including neurodegenerative disease, cancer and diabetes, among others, allows for this structure to be utilised as a potential disease biomarker,” says Anaelle Tannen, Healthcare Analyst at GlobalData. “This could serve as a revolutionary change in preventing old-age disease, reducing the health and socioeconomic burden on society.”

Despite their discovery nearly 12 years ago, circRNA biomarkers are still not being heavily investigated, Rajewsky adds. Still, he goes on to say that circRNA biomarkers are likely to be approved before any vaccines or therapeutics.

Early trials will focus on safety

These benefits have so far only been observed in preclinical research, so until first-in-human studies are conducted, it is difficult to say whether these will translate.

“Experimenting in a clinical context is required in order to assess whether this therapeutic format will be safe and efficacious in the real world,” explains Tannen. “Research will also help in understanding the physiological and pathological mechanisms of circRNAs, and how these may benefit or impede human life.”

Trial designs may be amended due to the individual characteristics of these candidates, but it is unlikely these trials will be significantly different from traditional trials, says Rajewsky.

One of the most likely changes in trial design will be that patients will be monitored for longer to ensure safety due to the longer acting feature of these candidates. There will also be quite a bit of investigation with dosing levels until there is a better understand of quite how efficacious these candidates can be.

“I think that the first few Phase I trials will be used to guide development of the [circRNA] platform. It’s not like a small molecule where you have one shot and then you’re done. These are codable technologies that you can continually improve and develop,” says Wesselhoeft, who expects to see some clinical results from drugs using this approach in the next two to five years.

Cell & Gene Therapy coverage on Pharmaceutical Technology is supported by Cytiva.

Editorial content is independently produced and follows thehighest standardsof journalistic integrity. Topic sponsors are not involved in the creation of editorial content.

Free Whitepaper

Optimise your cell therapy process: a guide to cell thawing

Typically carried out at the point of care, errors in cell therapy thawing could compromise treatment efficacy, leading to significant patient impact as well as high costs and a compromised reputation for the product’s developer.This guide addresses how cell thawing has historically developed into the new techniques used today, along with the physical and biological implications of key metrics and components such as warming rate and ice structure. Also included are reviews of key studies from scientific literature and a consideration of the interactions between cooling and warming rates, as applicable to cell and gene therapies.

Thank you.

You will receive an email shortly. Please check your inbox to download the Whitepaper.

By Cytiva Thematic

Circular RNA: Vaccines, therapeutics and biomarkers could be revolutionised (8)

By downloading this case study, you acknowledge that GlobalData may share your information with Cytiva Thematic and that your personal data will be used as described in their Privacy Policy

Circular RNA: Vaccines, therapeutics and biomarkers could be revolutionised (9)

Sign up for our daily news round-up!

Give your business an edge with our leading industry insights.

Sign up

Circular RNA: Vaccines, therapeutics and biomarkers could be revolutionised (2024)

FAQs

Circular RNA: Vaccines, therapeutics and biomarkers could be revolutionised? ›

Circular RNA: Vaccines, therapeutics and biomarkers could be revolutionised. CircRNA is still in very early days of development, but it is expected to trialled in vaccines, therapeutics and biomarkers trials in the next few years.

What is the difference between circular RNA and mRNA? ›

Compared with the canonical linear mRNA used in vaccines, circRNAs have multiple advantages (Table 1). (1) CircRNAs are more stable and easy to store, whereas mRNA vaccines exhibit extreme instability because it is susceptible to degradation by RNases during transportation, storage, delivery, etc.

What diseases have mRNA vaccines been used for as a therapeutic approach? ›

TABLE 2
Vaccine nameTargetRoute
mRNA‐1345Respiratory Syncytial Virus (RSV)Intramuscular
mRNA‐1647Cytomegalovirus InfectionIntramuscular
mRNA‐1010Seasonal InfluenzaIntramuscular
mRNA‐1893Zika VirusIntramuscular
14 more rows

What is the future use of mRNA vaccine? ›

While the mRNA vaccines for COVID-19 and other infectious diseases prevent disease, mRNA technology can also help treat existing diseases like cancer. The platform's flexibility allows researchers to create mRNA cancer vaccines that activate the immune system to attack cancer cells.

What is circular RNA vaccine platform? ›

As the name suggests, circular RNA vaccine technology uses a closed-loop RNA, which could enable vaccine candidates based on it to be more stable and durable than current linear-based mRNA candidates. The technology could also deliver improved efficacy in smaller doses.

What is the advantage of circular RNA? ›

The covalently-closed structure of circRNAs offers a significant stability advantage over linear mRNA for therapeutic applications. Without 5ʹ or 3ʹ ends, circular RNAs are more resistant to exonuclease degradation than linear RNA.

What do circular RNAs do? ›

Circular RNA plays a significant role in immune regulation and induction of T cell responses. circRNA100783 is involved in immunity and senescence of CD8+ T cells. circRNA-003780 and circRNA-010056 also have major roles for macrophage differentiation and polarization.

What drugs contain mRNA? ›

Table 2
Drug NameIndicationsClinical Phase
COVID-19 mRNA vaccineCOVID-19Phase II
COVID-19 mRNA vaccine (LVRNA009)COVID-19Phase II
SARS-CoV-2 mRNA vaccine (BNT162b2)COVID-19Phase II
Personalized tumor vaccine with mRNA encoding a nascent antigen/Tremelimumab injectionAdvanced non-small cell lung cancerPhase I
3 more rows

Does the RSV vaccine have mRNA in it? ›

In January 2023, we announced mRNA-1345 as our second respiratory vaccine program with positive Phase 3 trial results. Our RSV vaccine is now approved in the U.S.We are awaiting regulatory review in multiple countries, and pending approval we look forward to launching in additional markets.

Is mRNA the same as immunotherapy? ›

Immunotherapy has emerged as a breakthrough strategy in cancer treatment. mRNA vaccines are an attractive and powerful immunotherapeutic platform against cancer because of their high potency, specificity, versatility, rapid and large-scale development capability, low-cost manufacturing potential, and safety.

Why are mRNA vaccines better? ›

Advantages of Using mRNA Vaccines

However, mRNA vaccines can be quickly designed, tested, and mass produced. mRNA vaccines are also safer because they do not contain live viruses.

What is a spike protein and what does it do? ›

Spike protein is one of the major structural proteins of severe acute respiratory syndrome-coronavirus. It is essential for the interaction of the virons with host cell receptors and subsequent fusion of the viral envelop with host cell membrane to allow infection.

Who discovered mRNA? ›

The articles published alongside each other in the same issue of Nature in May 1961 – François Gros was the first author of one article (4) and François Jacob the second author of the other (5) – officially marked the discovery of messenger RNA.

What is the difference between mRNA and circRNA? ›

116 In contrast to conventional linear mRNA vaccines, circRNAs offer several advantages. Notably, circRNAs exhibit superior stability and storage characteristics when compared with mRNA vaccines, which are prone to degradation by RNases during delivery, transportation, and storage. ...

Is circular RNA single or double stranded? ›

Circular RNA (circRNA) is a class of single-stranded RNAs with a covalently closed loop structure generated from back-splicing of precursor mRNA (pre-mRNA), a process highly regulated by cis-acting elements and trans-acting factors.

What is the difference between RNA and mRNA? ›

There are several different types of RNA. One type of RNA is known as mRNA, which stands for “messenger RNA.” mRNA is RNA that is read by ribosomes to build proteins. While all types of RNA are involved in building proteins, mRNA is the one that actually acts as the messenger.

What is the difference between linear and circular RNA? ›

In some cases, linear lncRNAs contain a short open reading frame encoding a peptide. circRNAs are covalently closed RNAs with tissue-specific and cell-specific expression patterns that have recently been extensively investigated.

What are the 3 types of RNA and how do they differ? ›

Three main types of RNA are involved in protein synthesis. They are messenger RNA (mRNA), transfer RNA (tRNA), and ribosomal RNA (rRNA). rRNA forms ribosomes, which are essential in protein synthesis. A ribosome contains a large and small ribosomal subunit.

What is the difference between total RNA and mRNA? ›

mRNA-Seq is generally more cost-effective since it focuses on a smaller portion of the transcriptome, whereas total RNA-Seq covers the entire transcriptome and may require a larger budget. Furthermore, it is crucial to evaluate the technical limitations and requirements of each method.

References

Top Articles
Latest Posts
Recommended Articles
Article information

Author: Nathanael Baumbach

Last Updated:

Views: 5709

Rating: 4.4 / 5 (75 voted)

Reviews: 82% of readers found this page helpful

Author information

Name: Nathanael Baumbach

Birthday: 1998-12-02

Address: Apt. 829 751 Glover View, West Orlando, IN 22436

Phone: +901025288581

Job: Internal IT Coordinator

Hobby: Gunsmithing, Motor sports, Flying, Skiing, Hooping, Lego building, Ice skating

Introduction: My name is Nathanael Baumbach, I am a fantastic, nice, victorious, brave, healthy, cute, glorious person who loves writing and wants to share my knowledge and understanding with you.